Human hands have over 20 degrees of freedom, enabled by a complex system of bones, muscles, and joints. Hand differences can significantly impair dexterity and independence in daily activities. Accurate assessment of hand function, particularly digit movement, is vital for effective intervention and rehabilitation. However, current clinical methods rely on subjective observations and limited tests. Smart gloves with inertial measurement unit (IMU) sensors have emerged as tools for capturing digit movements, yet their sensor accuracy remains underexplored. This study developed and validated an IMU-based smart glove system for measuring finger joint movements in individuals with hand differences. The glove measured 3D digit rotations and was evaluated against an industrial robotic arm. Tests included rotations around three axes at 1°, 10°, and 90°, simulating extension/flexion, supination/pronation, and abduction/adduction. The IMU sensors demonstrated high accuracy and reliability, with minimal systematic bias and strong positive correlations (p > 0.95 across all tests). Agreement matrices revealed high agreement (<1°) in 24 trials, moderate (1-10°) in 12 trials, and low (>10°) in only 4 trials. The Root Mean Square Error (RMSE) ranged from 1.357 to 5.262 for the 90° tests, 0.094 to 0.538 for the 10° tests, and 0.129 to 0.36 for the 1° tests. Likewise, mean absolute error (MAE) ranged from 0.967 to 4.679 for the 90° tests, 0.073 to 0.386 for the 10° tests, and 0.102 to 0.309 for the 1° tests. The sensor provided precise measurements of digit angles across 0-90° in multiple directions, enabling reliable clinical assessment, remote monitoring, and improved diagnosis, treatment, and rehabilitation for individuals with hand differences.
Read full abstract