Abstract
This work proposes the design of a low-cost sensory glove system that complements the operation of a 3D-printed mechanical hand prosthesis, providing it with the ability to detect touch, locate it and even measure the intensity of associated forces. Firstly, the production of the prosthetic model was performed using 3D printing, which allowed for quick and cheap production of a robotic hand with the implementation of a mechanical system that allows controlled movements with high performance and with the possibility of easily replacing each piece individually. Secondly, we performed the construction and instrumentation of a complementary sensory mimicry add-on system, focusing on the ability to sense touch as the primary target. Using piezoresistive sensors attached to the palm of the glove, a multi-sensor system was developed that was able to locate and quantify forces exerted on the glove. This system showed promising results and could be used as a springboard to develop a more complex and multifunctional system in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.