Background and Objective:Alzheimer’s disease (AD) is a neurological disorder that impairs brain functions associated with cognition, memory, and behavior. Noninvasive neurophysiological techniques like magnetoencephalography (MEG) and electroencephalography (EEG) have shown promise in reflecting brain changes related to AD. These techniques are usually assessed at two levels: local activation (spectral, nonlinear, and dynamic properties) and global synchronization (functional connectivity, frequency-dependent network, and multiplex network organization characteristics). Nonetheless, the understanding of the organization formed by the existing relationships between these levels, henceforth named neurophysiological organization, remains unexplored. This work aims to assess the alterations AD causes in the resting-state neurophysiological organization. Methods:To that end, three datasets from healthy controls (HC) and patients with dementia due to AD were considered: MEG database (55 HC and 87 patients with AD), EEG1 database (51 HC and 100 patients with AD), and EEG2 database (45 HC and 82 patients with AD). To explore the alterations induced by AD in the relationships between several features extracted from M/EEG data, association networks (ANs) were computed. ANs are graphs, useful to quantify and visualize the intricate relationships between multiple features. Results:Our results suggested a disruption in the neurophysiological organization of patients with AD, exhibiting a greater inclination towards the local activation level; and a significant decrease in the complexity and diversity of the ANs (p-value ¡ 0.05, Mann–Whitney U-test, Bonferroni correction). This effect might be due to a shift of the neurophysiological organization towards more regular configurations, which may increase its vulnerability. Moreover, our findings support the crucial role played by the local activation level in maintaining the stability of the neurophysiological organization. Classification performance exhibited accuracy values of 83.91%, 73.68%, and 72.65% for MEG, EEG1, and EEG2 databases, respectively. Conclusion:This study introduces a novel, valuable methodology able to integrate parameters characterize different properties of the brain activity and to explore the intricate organization of the neurophysiological organization at different levels. It was noted that AD increases susceptibility to changes in functional neural organization, suggesting a greater ease in the development of severe impairments. Therefore, ANs could facilitate a deeper comprehension of the complex interactions in brain function from a global standpoint.