Abstract

Collective motion of chiral particles in complex noise environments is investigated based on the Vicsek model. In the model, we added chirality, along with complex noise, affecting particles clustering motion. Particles can only avoid noise interference in a specific channel, and this consideration is more realistic due to the complexity of the environment. Via simulations, we find that the channel proportion, p, critically influences chiral particle synchronization. Specifically, we observe a disorder-order transition at critical [Formula: see text], only when [Formula: see text], the system can achieve global synchronization. Combined with our definition of spatial distribution parameter and observation of the model, the reason is that particles begin to escape from the noise region under the influence of complex noise. In addition, the value of [Formula: see text] increases linearly with velocity, while it decreases monotonically with the increase in chirality and interaction radius. Interestingly, an appropriate noise amplitude minimizes [Formula: see text]. Our findings may inspire novel strategies to manipulate self-propelled particles of distinct chirality to achieve desired spatial migration and global synchronization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call