Nowadays, the scheme of a stand-alone microgrid utilizing renewable energy is regarded as an effective approach to guarantee the power supply of an off-grid system. However, the intermittent nature of renewables brings new challenges to the determination of the optimal operation point for a hybrid energy system (HES). To address this issue, this paper proposes a subsection bi-objective optimization dynamic programming strategy for the HES consisting of photovoltaic, fuel cell, electrolyzer, hydrogen storage system, and battery bank. Within the proposed strategy, reasonable rule-based judgment is introduced to reduce the complexity of system control. Moreover, dynamic programming is selected to obtain the global optimal power distribution scheme. Meanwhile, a multi-objective genetic algorithm strategy is designed for comparative analysis. The results in two typical cases indicate the proposed strategy can improve photovoltaic utilization by 0.95% and 0.0003%, and fuel economy by nearly 50%.
Read full abstract