Abstract

A new type of experiment that aims to determine the optimal quantities of a sequence of factors is eliciting considerable attention in medical science, bioengineering, and many other disciplines. Such studies require the simultaneous optimization of both quantities and sequence orders of several components which are called quantitative-sequence (QS) factors. Given the large and semi-discrete solution spaces in such experiments, efficiently identifying optimal or near-optimal solutions by using a small number of experimental trials is a nontrivial task. To address this challenge, we propose a novel active learning approach, called QS-learning, to enable effective modeling and efficient optimization for experiments with QS factors. QS-learning consists of three parts: a novel mapping-based additive Gaussian process (MaGP) model, an efficient global optimization scheme (QS-EGO), and a new class of optimal designs (QS-design). The theoretical properties of the proposed method are investigated, and optimization techniques using analytical gradients are developed. The performance of the proposed method is demonstrated via a real drug experiment on lymphoma treatment and several simulation studies. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.