SUMMARYWe derive exact expressions for the thermal expansivity, heat capacity and bulk modulus for assemblages with arbitrarily large numbers of components and phases, including the influence of phase transformations and chemical exchange. We illustrate results in simple two-component, two-phase systems, including Mg–Fe olivine-wadsleyite and Ca–Mg clinopyroxene-orthopyroxene and for a multicompontent model of mantle composition in the form of pyrolite. For the latter we show results for the thermal expansivity and heat capacity over the entire mantle pressure–temperature regime to 40 GPa, or a depth of 1000 km. From the thermal expansivity, we derive a new expression for the phase buoyancy parameter that is valid for arbitrarily large numbers of phases and components and which is defined at every point in pressure–temperature space. Results reveal regions of the mantle where the magnitude of the phase buoyancy parameter is larger in magnitude than for those phase transitions that are most commonly included in mantle convection simulations. These regions include the wadsleyite to garnet and ferropericlase transition, which is encountered along hot isentropes (e.g. 2000 K potential temperature) in the transition zone, and the ferropericlase and stishovite to bridgmanite transition, which is encountered along cold isentropes (e.g. 1000 K potential temperature) in the shallow lower mantle. We also show the bulk modulus along a typical mantle isentrope and relate it to the Bullen inhomogeneity parameter. All results are computed with our code HeFESTo, updates and improvements to which we discuss, including the implementation of the exact expressions for the thermal expansivity, heat capacity and bulk modulus, generalization to allow for pressure dependence of non-ideal solution parameters and an improved numerical scheme for minimizing the Gibbs free energy. Finally, we present the results of a new global inversion of parameters updated to incorporate more recent results from experiment and first principles theory, as well as a new phase (nal phase), and new species: Na-majorite and the NaAlO2 end-member of ferropericlase.