We prove boundary controllability results for wave equations (with lower-order terms) on Lorentzian manifolds with time-dependent geometry satisfying suitable curvature bounds. The main ingredient is a novel global Carleman estimate on Lorentzian manifolds that is supported in the exterior of a null (or characteristic) cone, which leads to both an observability inequality and bounds for the corresponding constant. The Carleman estimate also yields a unique continuation result on the null cone exterior, which has applications toward inverse problems for linear waves on Lorentzian backgrounds.