Abstract

In this paper, we prove a boundary unique continuation property for a fourth-order stochastic parabolic equation evolving in a domain G⊂Rn. Our result shows that the value of the solution can be determined by the observation on an arbitrary open subset of the boundary. The quantitative version of this property can be derived by the global Carleman estimate, which is deduced from a weighted identity for a fourth-order stochastic parabolic operator. The results in this paper are also new even if the fourth-order stochastic parabolic equation reduces to the corresponding fourth-order deterministic parabolic equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.