To date, our knowledge of Rift Valley fever (RVF) disease spread and maintenance is still limited, as flooding, humid weather and presence of biting insects such as mosquitoes, have not completely explained RVF outbreaks. We propose a model that includes livestock, mosquitoes and ticks compartments structured according to their questing and feeding behaviour in order to study the possible role of ticks on the dynamics of RVF. To quantify disease transmission at the initial stage of the epidemic, we derive an explicit formula of the basic reproductive number, [Formula: see text]. Using the concept of Metzler matrix, we state necessary conditions for global asymptotic stability of the disease-free equilibrium. Results suggest that although host-ticks interactions may serve as disease reservoirs or disease amplifiers, the Aedes reproductive number should be kept under unity if disease post-epizootics activities are to be controlled. Results of both local and global sensitivity analysis of selected model parameters indicate that [Formula: see text] is more sensitive to the ticks attachment and detachment rates, probability of transmission from ticks to host and from host to ticks, length of infection in livestock and ticks death rate. Furthermore, when comparing the mean value of [Formula: see text] with that from previous studies which did not include ticks we found that our [Formula: see text] is very much larger resulting in an increase in the exponential phase of an outbreak. These findings suggest that if ticks are capable of transmitting the virus, they may be contributing to disease outbreaks and endemicity.