7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.neunet.2015.07.012
Copy DOIJournal: Neural Networks | Publication Date: Jul 31, 2015 |
Citations: 167 |
Global asymptotic stability and synchronization of a class of fractional-order memristor-based delayed neural networks are investigated. For such problems in integer-order systems, Lyapunov–Krasovskii functional is usually constructed, whereas similar method has not been well developed for fractional-order nonlinear delayed systems. By employing a comparison theorem for a class of fractional-order linear systems with time delay, sufficient condition for global asymptotic stability of fractional memristor-based delayed neural networks is derived. Then, based on linear error feedback control, the synchronization criterion for such neural networks is also presented. Numerical simulations are given to demonstrate the effectiveness of the theoretical results.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.