This paper presents experimental and theoretical assessments of the structural behavior of circular steel fiber-reinforced concrete (SFRC) columns reinforced with glass fiber-reinforced polymer (GFRP) bars subjected to a concentric axial compressive load. Laboratory experiments were planned to evaluate and compare the effect of different design parameters on the structural behavior of column specimens based on experiments and finite element (FE) analysis. The experimental variables were (i) concrete types, i.e., conventional concrete (CC) and fiber-reinforced concrete (FC), (ii) longitudinal reinforcement types, i.e., steel and GFRP bars, and (iii) transverse rebar configurations, i.e., tied and spiral with different pitches. Sixteen column specimens were fabricated and categorized into four groups with respect to rebar configurations and concrete types. The results showed that the failure modes and cracking patterns of those four column groups were comparable, particularly in the pre-peak branches of load-deflection curves. Even though the average ultimate load of the columns with longitudinal GFRP bars was 17.9% less than that with longitudinal steel bars, the ductility index (DI) was 10.2% greater than their counterpart on average. The addition of steel fibers (SF) to concrete increased the axial peak load by up to 3.1% and the DI by up to 6.6% compared to their counterpart CC columns without SFs. The DI of specimens was increased by higher volumetric ratios (up to 12%) and spiral types (up to 5.5%). The concrete damage plastic (CDP) model for FC columns was updated in the finite element software ABAQUS 6.14. Finally, a new simple equation was theoretically proposed to predict the axial capacity of specimens by considering the inclusion of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop ties. Good agreement between the proposed model predictions and the experimental/numerical results was observed.