Abstract
Abstract To investigate the impact behavior and residual strength of glass fiber-reinforced polymer (GFRP) laminates embedded with/without steel wire mesh, low-velocity-impact (LVI) and post-impact tensile tests are conducted carefully. According to the wire diameter and spacing of steel wire mesh, we manufactured two groups of specimens via conventional vacuum-assisted resin infusion. Further, the digital image correlation technique was applied to record the strain evolution. Based on the results, including impact response history, failure morphology, strain contour, the failure mechanism and effect of the parameters of steel wire mesh is revealed in detail. The results show that the embedding of wire mesh can improve the impact resistance and residual strength, with a more significant effect as both the increase of wire diameter and decrease of wire spacing. Compared with GFRP laminates, the peak force of specimens with the thickest and densest wire mesh increase by 105% and 141% under LVI tests and 254% and 141% in post-impact tensile tests, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.