A frameshift mutation generated from a dinucleotide deletion (780-781del) in the GJA1 gene encoding Cx43 results in a frameshift yielding 46 aberrant amino acids after residue 259 and a shortened protein of 305 residues compared with the 382 in wild-type Cx43. This frameshift mutant (fs260) causes oculodentodigital dysplasia (ODDD) that includes the added condition of palmoplantar keratoderma. When expressed in a variety of cell lines, the fs260 mutant was typically localized to the endoplasmic reticulum and other intracellular compartments. The fs260 mutant, but not the G138R ODDD-linked Cx43 mutant or a Cx43 mutant truncated at residue 259 (T259), reduced the number of apparent gap junction plaques formed from endogenous Cx43 in normal rat kidney cells or keratinocytes. Interestingly, mutation of a putative FF endoplasmic reticulum retention motif encoded within the 46 aberrant amino acid domain failed to restore efficient assembly of the fs260 mutant into gap junctions. Dual whole cell patch-clamp recording revealed that fs260-expressing N2A cells exerted severely reduced electrical coupling in comparison to wild-type Cx43 or the T259 mutant, whereas single patch capacitance recordings showed that fs260 could also dominantly inhibit the function of wild-type Cx43. Co-expression studies further revealed that the dominant negative effect of fs260 on wild-type Cx43 was dose-dependent, and at a predicted 1:1 expression ratio the fs260 mutant reduced wild-type Cx43-mediated gap junctional conductance by over 60%. These results suggest that the 46 aberrant amino acid residues associated with the frameshift mutant are, at least in part, responsible for the manifestation of palmoplantar keratoderma symptoms.
Read full abstract