The main purpose of this paper is to use ensembles techniques of functional tree-based bagging, rotation forest, and dagging (functional trees (FT), bagging-functional trees (BFT), rotation forest-functional trees (RFFT), dagging-functional trees (DFT)) for landslide susceptibility modeling in Zichang County, China. Firstly, 263 landslides were identified, and the landslide inventory map was established, and the landslide locations were randomly divided into 70% (training data) and 30% (validation data). Then, 14 landslide conditioning factors were selected. Furthermore, the correlation analysis between conditioning factors and landslides was applied using the certainty factor method. Hereafter, four models were applied for landslide susceptibility modeling and zoning. Finally, the receiver operating characteristic (ROC) curve and statistical parameters were used to evaluate and compare the overall performance of the four models. The results showed that the area under the curve (AUC) for the four models was larger than 0.74. Among them, the BFT model is better than the other three models. In addition, this study also illustrated that the integrated model is not necessarily more effective than a single model. The ensemble data mining technology used in this study can be used as an effective tool for future land planning and monitoring.
Read full abstract