We consider the magnetic Ginzburg–Landau equations in a compact manifold N-ε2ΔAu=12(1-|u|2)u,ε2d∗dA=⟨∇Au,iu⟩.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\left\\{ \\begin{array}{l} -\\varepsilon ^2{\\varDelta }^Au = \\frac{1}{2}(1-|u|^{2})u,\\\\ \\varepsilon ^2d^*dA=\\langle \ abla ^Au,iu\\rangle . \\end{array}\\right. \\end{aligned}$$\\end{document}Here u:N→C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$u:N\\rightarrow \\mathbb {C}$$\\end{document} and A is a 1-form on N. We discuss some recent results on the construction of solutions exhibiting concentration phenomena near prescribed minimal, codimension 2 submanifolds corresponding to the vortex set of the solution. Given a codimension-2 minimal submanifold M⊂N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M\\subset N$$\\end{document} which is also oriented and non-degenerate, we construct a solution (uε,Aε)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(u_{\\varepsilon },A_{\\varepsilon })$$\\end{document} such that uε\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$u_\\varepsilon $$\\end{document} has a zero set consisting of a smooth surface close to M. Away from M we have 1uε(x)→z|z|,Aε(x)→1|z|2(-z2dz1+z1dz2),x=expy(zβνβ(y))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} u_\\varepsilon (x)\\rightarrow \\frac{z}{|z|},\\quad A_\\varepsilon (x)\\rightarrow \\frac{1}{|z|^2}(-z_2dz^1+z_1dz^2),\\quad x=\\exp _y(z^\\beta \ u _\\beta (y)) \\end{aligned}$$\\end{document}as ε→0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varepsilon \\rightarrow 0$$\\end{document}, for all sufficiently small z≠0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$z\ e 0$$\\end{document} and y∈M\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$y\\in M$$\\end{document}. Here, {ν1,ν2}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\{\ u _1,\ u _2\\}$$\\end{document} is a normal frame for M in N. These results improve, by giving precise quantitative information, a recent construction by De Philippis and Pigati (arXiv:2205.12389, 2022) who built solutions for which the concentration phenomenon holds in an energy, measure-theoretical sense. In addition, we consider the non-compact case N=R4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N=\\mathbb {R}^4$$\\end{document} and the special case of a two-dimensional minimal surface in R3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R}^3$$\\end{document}, regarded as a codimension 2 minimal submanifold in R4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R}^4$$\\end{document}, with finite total curvature and non-degenerate. We construct a solution (uε,Aε)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(u_\\varepsilon ,A_\\varepsilon )$$\\end{document} which has a zero set consisting of a smooth 2-dimensional surface close to M×{0}⊂R4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M\ imes \\{0\\}\\subset \\mathbb {R}^4$$\\end{document}. Away from the latter surface we have |uε|→1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|u_\\varepsilon | \\rightarrow 1$$\\end{document} and asymptotic behavior as in (1).
Read full abstract