Abstract

We consider the linear BCS equation, determining the BCS critical temperature, in the presence of a boundary, where Dirichlet boundary conditions are imposed. In the one-dimensional case with point interactions, we prove that the critical temperature is strictly larger than the bulk value, at least at weak coupling. In particular, the Cooper-pair wave function localizes near the boundary, an effect that cannot be modeled by effective Neumann boundary conditions on the order parameter as often imposed in Ginzburg–Landau theory. We also show that the relative shift in critical temperature vanishes if the coupling constant either goes to zero or to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.