The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area. To clarify the controls and influences, the deformation characteristics, structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration, area-depth-strain (ADS) analysis, and structural geometric forward numerical simulation, after comprehensive structural interpretation of high-precision 3D seismic data. The results are obtained in three aspects. First, above and below the P/AnP (Permian/pre-Permian) unconformity, the Tongnan negative structure demonstrates vertical differential structural deformation. It experiences two stages of structural stacking and reworking: extensional depression (from the Sinian Dengying Formation to the Permian), and compressional syncline deformation (after the Jurassic). The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression. The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation, and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician. Second, the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs. Third, the Ordovician, which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top, has basic geological conditions for the formation of weathering karst carbonate reservoirs. It is a new petroleum target deserving attention.
Read full abstract