Deep learning has made it possible to accurately generate high dynamic range (HDR) images from multiple images taken at different exposure settings, largely owing to advancements in neural network design. However, generating images without artifacts remains difficult, especially in scenes with moving objects. In such cases, issues like color distortion, geometric misalignment, or ghosting can appear. Current state-of-the-art network designs address this by estimating the optical flow between input images to align them better. The parameters for the flow estimation are learned through the primary goal, producing high-quality HDR images. However, we find that this ”task-oriented flow” approach has its drawbacks, especially in minimizing artifacts. To address this, we introduce a new network design and training method that improve the accuracy of flow estimation. This aims to strike a balance between task-oriented flow and accurate flow. Additionally, the network utilizes multi-scale features extracted from the input images for both flow estimation and HDR image reconstruction. Our experiments demonstrate that these two innovations result in HDR images with fewer artifacts and enhanced quality.