Abstract
PurposeAiming at the problems of geometric precision misalignment and unconsidered physical constraints between large components during the measurement-assisted assembly, a self-adaptive alignment strategy based on the dynamic compliance center (DCC) is proposed in this paper, using force information to guide alignment compliantly.Design/methodology/approachFirst, the self-adaptive alignment process of large components is described, and its geometrical and mechanical characteristics are analyzed based on six-dimensional force/torque (F/T). The setting method of DCC is studied and the areas of DCC are given. Second, the self-adaptive alignment platform of large components driven by the measured six-dimensional F/T is constructed. Based on this platform, the key supporting technologies, including principle of self-adaptive alignment, coordinate transfer, calculation of six-dimensional F/T and alignment process control, are illustrated.FindingsUsing the presented strategy, the position and orientation of large component is adjusted adaptively responding to measured six-dimensional F/T and the changes of contact states are consistent with the strategy. Through the setting of DCC, alignment process runs smoothly without jamming.Practical implicationsThis strategy is applied to the alignment experiment of large components muff coupling. The experimental results show that the proposed alignment strategy is correct and effective and meets the real-time requirement.Originality/valueThis paper proposed a novel way to apply force information in large component self-adaptive alignment, and the setting method of DCC was presented to make the alignment process more feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.