One of the major challenges for crop breeding scientists is climate change. Their task is to develop new crop varieties that can withstand this phenomenon. For this study, a new Egyptian paddy variety called Giza 183, which is designed to adapt to mitigate the effects of climate change, was chosen. We focused on examining the physical and engineering properties of this variety in order to design strategies for storage, handling, transportation, drying, parboiling, and processing equipment in rice mills. The goal was to minimize post-harvest losses during the milling process, thereby maximizing high-quality yields while reducing losses. The physical properties of the rice grains, such as the length, width, and thickness, were measured at an average moisture content of 13.7% ± 0.25% (wet basis). The results reveal that the mean values of length, width, and thickness averaged 7.50 mm, 3.18 mm, and 2.19 mm, respectively. Additionally, the geometric mean diameter, the equivalent mean diameter, surface area, arithmetic mean diameter, and volume were approximately 3.74 mm, 2.38 mm, 37.37 mm2, 4.29 mm, and 28.23 mm3, respectively. The mean of sphericity was 49.9%, and the grain shape (length/width) was 2.19. The true density was measured at 1218.28 kgm−3, while the bulk density was 572.17 kgm−3. The porosity was found to be 53.03%. Furthermore, the milling production rates for brown rice, hull, white rice, and broken rice were determined to be 76.83%, 23.15%, 67.97%, and 17.36%, respectively. The average weight of one thousand grains was 25.49 g. A linear regression model for describing the mass of rough rice grain was investigated. The mass was estimated with the single variable of the grain aspect ratio (width/length) with a determination coefficient of 0.9908. Information gained from the current study will be useful in designing post-harvest processing and storage structures in rice processing industries..
Read full abstract