Abstract
With the growing prevalence of plastic use, the environmental release of plastic waste is escalating, and fragmented nanoscale plastic particles are emerging as significant environmental threats. This study aimed to evaluate the cytotoxic effects of fragmented polyethylene nanoplastics (PE NPs) manufactured using a focused ultrasonic system. The ultrasonic irradiation process generated fragmented PE NPs with a geometric mean diameter of 85.14 ± 5.37 nm and a size range of 25–350 nm. To assess cytotoxicity, we conducted a series of tests on various human cell lines, including stomach, blood, colon, lung, skin, liver, and brain-derived cells. The testing involved MTS-based cell viability assays to evaluate direct impacts on cell viability, lactate dehydrogenase (LDH) leakage assays to measure membrane damage, and ELISA to quantify TNF-α release as an indicator of inflammation. Although PE-NPs did not immediately induce apoptosis, significant LDH leakage and elevated TNF-α levels were observed across all cell lines, indicating membrane damage and inflammatory responses. Additionally, flow cytometry and TEM analyses revealed the intracellular accumulation of PE-NPs, further supporting their cytotoxic potential. These results demonstrate that fragmented PE-NPs can disrupt cellular membranes and induce inflammatory responses through accumulation within cells. The findings suggest that these NPs pose potential hazards to cell viability and underscore the need for further research into their environmental and health impacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.