By using a change of variables, we get new equations, whose respective associated functionals are well defined in <svg style="vertical-align:-2.3205pt;width:56.75px;" id="M1" height="18.9125" version="1.1" viewBox="0 0 56.75 18.9125" width="56.75" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.95)"><path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28
h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /></g> <g transform="matrix(.012,-0,0,-.012,14.975,7.8)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g> <g transform="matrix(.017,-0,0,-.017,21.3,15.95)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,27.182,15.95)"><path id="x211D" d="M751 18q-1 -4 -2 -13t-2 -13q-24 0 -35 1q-57 3 -92.5 23t-69.5 68q-21 30 -101 160q-13 22 -30.5 31t-54.5 9h-32v-159q0 -62 14 -77t74 -20v-28h-382v28q62 5 76 19.5t14 77.5v400q0 63 -14 77.5t-76 19.5v28h372q109 0 159 -34q67 -42 67 -131q0 -115 -127 -172
q27 -52 89 -144q49 -71 81 -104q31 -36 72 -47zM543 469q0 76 -42 112t-104 36q-41 0 -54 -10q-11 -7 -11 -44v-247h48q73 0 108 29q55 42 55 124zM290 131v390q0 62 -7.5 79.5t-30.5 17.5q-24 0 -31.5 -17.5t-7.5 -79.5v-390q0 -62 7.5 -79.5t31.5 -17.5q23 0 30.5 17.5
t7.5 79.5z" /></g> <g transform="matrix(.012,-0,0,-.012,39.787,7.8)"><path id="x1D441" d="M857 650l-6 -28q-44 -4 -61.5 -16.5t-29.5 -48.5q-11 -32 -37 -166l-78 -399h-29l-351 537h-4l-56 -276q-24 -120 -24 -164q0 -35 17.5 -46t75.5 -15l-6 -28h-245l7 28q41 2 62 14t31 44q10 30 41 171l53 245q8 44 6.5 60.5t-14.5 33.5q-10 15 -27 19.5t-64 6.5l6 28h153
l350 -516h5l48 257q25 131 25 171q0 34 -17.5 45t-77.5 15l7 28h240z" /></g> <g transform="matrix(.017,-0,0,-.017,50.8,15.95)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> and satisfy the geometric hypotheses of the mountain pass theorem. Using this fact, we obtain a nontrivial solution.
Read full abstract