Abstract
We consider a Dirac operator on right triangles, subject to infinite-mass boundary conditions. We conjecture that the lowest positive eigenvalue is minimized by the isosceles right triangle under the area or perimeter constraints. We prove this conjecture under extra geometric hypotheses relying on a recent approach of Briet and Krejčiřík [J. Math. Phys. 63, 013502 (2022)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.