Abstract

Redatuming is a data processing technique to transform measurements recorded in one acquisition geometry to an analogous data set corresponding to another acquisition geometry, for which there are no recorded measurements. We consider a redatuming problem for a wave equation on a bounded domain, or on a manifold with boundary, and model data acquisition by a restriction of the associated Neumann-to-Dirichlet map. This map models measurements with sources and receivers on an open subset $\Gamma$ contained in the boundary of the manifold. We model the wavespeed by a Riemannian metric and suppose that the metric is known in some coordinates in a neighborhood of $\Gamma$. Our goal is to move sources and receivers into this known near boundary region. We formulate redatuming as a collection of unique continuation problems and provide a two-step procedure to solve the redatuming problem. We investigate the stability of the first step in this procedure, showing that it enjoys conditional Hölder stability under suitable geometric hypotheses. In addition, we provide computational experiments that demonstrate our redatuming procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.