Ants (Hymenoptera: Formicidae) are among the largest and most widespread families of terrestrial insects and are valuable to medical and ecological investigations. The mitochondrial genome has been widely used as a reliable genetic marker for species identification and phylogenetic analyses. To further understand the mitogenome-level characteristics of the congeneric Formicidae species, the complete mitogenome of Formica sinae (Hymenoptera: Formicidae) was sequenced, annotated, and compared with other 48 Formicidae species. The results showed that gene composition, content, and codon usage were conserved. The complete mitochondrial genome of F. sinae was 17,432 bp, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one control region located between rrnS and trnM, which was 1,256 bp long, the longest of all sequenced species. Gene rearrangement was not detected in Formica species (Hymenoptera: Formicidae). All PCGs of F. sinae were initiated with ATN codons and terminated with the TAA codon. The overall nucleotide composition of F. sinae was AT-biased (83.51%), being 80.58% in PCGs, 86.68% in tRNAs, 87.10% in rRNAs, and 88.70% in the control region. Phylogenetic analyses indicated that each subfamily formed a strongly monophyletic group. Furthermore, F. sinae clustered with Formica fusca (Hymenoptera: Formicidae) and Formica selysi (Hymenoptera: Formicidae). This work enhances the genetic data of Formicidae and contributes to our understanding of their phylogenic relationship, evolution, and utilization.