Abstract
The flesh flies (Diptera: Sarcophagidae) are significant in forensic investigations. The mitochondrial genome (mitogeome) has been widely used as genetic markers for phylogenetic analysis and species identification. To further understand the mitogenome-level features in Sarcophagidae, the complete mitogenome of Sarcophaga formosensis (Kirneret Lopes, 1961) (Diptera: Sarcophagidae) and Sarcophaga misera (Walker, 1849) (Diptera: Sarcophagidae) was firstly sequenced, annotated, and compared with other 13 Sarcophagidae species. The result indicated that the gene arrangement, gene content, base composition, and codon usage were conserved in the ancestral arthropod. Evolutionary rate of the mitogenome fragments revealed that the nonsynonymous and synonymous substitution rates (Ka and Ks) ratio was less than 1.00, indicating these variable sites under strong purifying selection. Almost all transfer RNA genes (tRNAs) have typical clover-leaf structures within these sarcophagid mitogenomes, except tRNA-Ser (AGN) is lack of the dihydrouridine arm. This comparative mitogenomic analysis sheds light on the architecture and evolution of mitogenomes in the Sarcophagidae. Phylogenetic analyses containing the interspecific distances from different regions in these species provided us new insights into the application of these effective genetic markers for species identification of flesh flies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.