Understanding the genetic basis of developmental delay (DD) and intellectual disability (ID) remains a considerable clinical challenge. This study evaluated the clinical application of trio whole exome sequencing (WES) in children diagnosed with DD/ID. The study comprised 173 children with unexplained DD/ID. The participants underwent trio-WES and their demographic, clinical, and genetic characteristics were evaluated. Based on their clinical features, the participants were classified into two groups for further analysis: a syndromic DD/ID group and a non-syndromic DD/ID group. The genetic diagnostic yield of the 173 children diagnosed with DD/ID was 49.7% (86/173). This included 58 pathogenic or likely pathogenic single nucleotide variants (SNVs) in 41 genes identified across 54 individuals (31.2%) through trio-WES. Among these, 22 SNVs had not been previously reported. Additionally, 30 copy number variations (CNVs) were detected in 36 individuals (20.8%). The diagnostic yield in the syndromic DD/ID group was higher than that in the non-syndromic DD/ID group (57.8% vs. 47.2%, P < 0.001). Within the syndromic DD/ID subgroup, the diagnostic yield of the DD/ID with epilepsy subgroup (83.9%) was significantly higher than those of the other subgroups (P < 0.001). Based on the analysis of the individuals' clinical phenotypes, the individuals with facial dysmorphism shown a higher diagnostic yield (68.2%, P < 0.001). The diagnostic yield of SNVs was higher in the individuals with DD/ID accompanied by epilepsy, whereas the diagnostic yield of CNVs was higher in the DD/ID without epilepsy group. Similarly, the diagnostic yield of de novo SNVs was higher in the DD/ID with epilepsy group, while the diagnostic yield of de novo CNVs was higher in the DD/ID without epilepsy group (all P < 0.001). Trio-WES is a crucial tool for the genetic diagnosis of DD/ID, demonstrating a diagnostic yield of up to 49.7%. De novo variants in autosomal dominant genes are significant contributors to DD/ID, particularly in non-consanguineous families.
Read full abstract