Quantum key distribution offers a promising avenue for establishing secure communication networks. However, its performance is significantly hampered by the conventional two-level information carriers (i.e., qubits) due to their limited information capacity and noise resilience. A fundamental approach to overcoming these limitations involves the adoption of high-dimensional qudits. Practical qudit platforms require robust propagation, outstanding controllability, and extreme compactness, to which integrated photonics provides a promising solution. Here, we achieved, for the first time, microlaser-enabled high-dimensional quantum communication through leveraging spin-orbit photon qudits, where the dynamical generation and manipulation of these multi-degrees-of-freedom complex quantum state are realized by a non-Hermitian-physics-driven integrated microlaser quantum transmitter. Such a microlaser photon manipulation, as a novel route towards high-dimensional quantum state generation, promises high energy efficiency, along with fast, compact, and precise qudit state reconfigurability. The four spin-orbit eigenstates emitted by the microlaser possess the same spatial-temporal structures, ensuring homogeneity between all qudit states used for key distribution, which effectively eliminates propagation dephasing and walk-off problems, thereby delivering the high-dimensional spin-orbit secret key generation to construct a robust quantum link. The demonstrated long-term system stability showcases the practical potential of the microlaser quantum transmitter, providing a critical step towards compact, high-information-capacity quantum communication networks. Published by the American Physical Society 2025
Read full abstract