We prove optimal embeddings of the generalized Sobolev spaces <svg style="vertical-align:-0.1638pt;width:34.75px;" id="M1" height="16.9625" version="1.1" viewBox="0 0 34.75 16.9625" width="34.75" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.7)"><path id="x1D44A" d="M1004 650l-6 -29q-54 -6 -71 -19.5t-51 -74.5l-271 -539h-33l-98 506h-3l-258 -506h-30l-78 532q-10 67 -21.5 80t-66.5 21l6 29h241l-8 -29l-26 -5q-34 -6 -41 -16t-3 -47l59 -425h4l251 510h31l102 -510h2q150 299 198 423q14 40 8.5 48.5t-47.5 16.5l-28 5l7 29h231z
" /></g> <g transform="matrix(.012,-0,0,-.012,17.338,8.537)"><path id="x1D458" d="M480 416q0 -21 -18 -41q-9 -11 -17 -7q-20 9 -42 9q-62 0 -140 -78q23 -69 88 -192q17 -31 27 -42t20 -11q16 0 62 46l17 -20q-64 -92 -119 -92q-35 0 -70 66q-41 73 -84 187q-36 -30 -62 -61q-27 -115 -35 -172q-41 -8 -78 -20l-6 6l140 612q7 28 0.5 34t-37.5 7l-34 1
l5 26q38 4 74 13.5t57 17t25 7.5q12 0 4 -32l-104 -443h2q35 38 97 93q39 35 65.5 56t62 41.5t58.5 20.5q19 0 30.5 -10t11.5 -22z" /></g> <g transform="matrix(.017,-0,0,-.017,23.938,16.7)"><path id="x1D438" d="M609 650l-19 -162l-30 -2q2 69 -14 94q-9 18 -28.5 26t-74.5 8h-88q-30 0 -37 -6.5t-12 -36.5l-41 -212h103q48 0 69 5.5t32 19t26 50.5h29l-40 -198h-30q2 58 -11.5 70.5t-85.5 12.5h-99l-30 -167q-17 -87 3 -101q18 -15 111 -15q59 0 89 7t54 27q8 7 15.5 16t16 21.5
l14 20.5t15 23.5t13.5 21.5l29 -10q-52 -129 -71 -163h-500l6 28q66 4 83 17.5t28 73.5l77 409q11 61 -0.5 75.5t-78.5 18.5l10 28h467z" /></g> </svg>, where <svg style="vertical-align:-0.0pt;width:10.8625px;" id="M2" height="11.175" version="1.1" viewBox="0 0 10.8625 11.175" width="10.8625" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><use xlink:href="#x1D438"/></g> </svg> is a rearrangement invariant function space, into the generalized Hölder-Zygmund space <svg style="vertical-align:-0.20474pt;width:28.575001px;" id="M3" height="12.0625" version="1.1" viewBox="0 0 28.575001 12.0625" width="28.575001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.738)"><path id="x1D49E" d="M449 645l-12 -19q-55 31 -136 31q-52 0 -103 -17t-85.5 -54.5t-34.5 -84.5q0 -60 41.5 -96.5t109.5 -43.5q81 125 216 216q137 92 240 92q46 0 71 -19.5t25 -55.5q0 -60 -67 -123q-66 -63 -177 -105q-109 -42 -225 -42q-69 -100 -69 -199q0 -49 31.5 -79.5t85.5 -30.5
q79 0 141 50q61 49 61 108q0 35 -20 54.5t-51 19.5q-53 0 -103 -53q-47 -52 -55 -131l-22 2q0 91 58 158t139 67q55 0 86.5 -26.5t31.5 -76.5q0 -81 -96 -148q-78 -54 -174 -54q-86 0 -141 46q-56 47 -56 127q0 81 48 171q-72 12 -121 55t-49 115q0 75 71 131q72 57 185 57
q91 0 156 -42zM331 355l1 -1q122 0 244 62q73 37 118.5 85.5t45.5 90.5q0 40 -50 40q-73 0 -174 -79q-102 -80 -185 -198z" /></g><g transform="matrix(.017,-0,0,-.017,13.611,11.738)"><path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28
h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /></g> </svg> generated by a function space <svg style="vertical-align:-0.0pt;width:15.0375px;" id="M4" height="11.175" version="1.1" viewBox="0 0 15.0375 11.175" width="15.0375" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><use xlink:href="#x1D43B"/></g> </svg>.
Read full abstract