Abstract

In this work, we aim to prove algebra properties for generalized Sobolev spaces W s,p ∩ L ∞ on a Riemannian manifold (or more general homogeneous type space as graphs), where W s,p is of Bessel-type W s,p := (1+L)−s/m (L p ) with an operator L generating a heat semigroup satisfying off-diagonal decays. We do not require any assumption on the gradient of the semigroup. Instead, we propose two different approaches (one by paraproducts associated to the heat semigroup and another one using functionals). We also study the action of nonlinearities on these spaces and give applications to semi-linear PDEs. These results are new on Riemannian manifolds (with a non-bounded geometry) and even in euclidean space for Sobolev spaces associated to second order uniformly elliptic operators in divergence form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.