Porous materials are widely used in the passive noise control field as sound absorbers. Conventional models of porous materials are assumed to have a rigid frame and show finite bulk elasticity. However, in the case of acoustical waves – characterized by high frequencies and small wavelengths – the effect of microstructure becomes significant. This effect of microstructure has resulted in the development of new types of waves, not found in the classical theory of elasticity. Generalized continuum theories include the construction of the linear theory of micropolar elasticity that consists of deformation and microrotation with six degrees of freedom, and hence can be used to study the acoustical characteristics of composites with a granular structure. In this study, we investigated transverse wave propagation and its reflection and transmission from a plane interface between two different elastic-micropolar porous interfaces in perfect contact. The micropolar porous composite was constructed using hollow glass microbubbles embedded in an epoxy matrix with six material constants that can be used as the acoustical absorbers. It was found that there are different wave types in a micropolar porous material for the incident SV (vertical transverse) or SH (horizontal transverse) wave. It was also found that these two coupled sets of transverse waves, when traveling with different velocities, are dominated by the critical value of microinertia, showing the influence of the micropolar porous characteristics.
Read full abstract