Abstract
This study aims at determining the elastic stress and displacement fields around a crack in a microstructured body under a remotely applied loading of the antiplane shear (mode III) type. The material microstructure is modeled through the Mindlin-Green-Rivlin dipolar gradient theory (or strain-gradient theory of grade two). A simple but yet rigorous version of this generalized continuum theory is taken here by considering an isotropic linear expression of the elastic strain-energy density in antiplane shearing that involves only two material constants (the shear modulus and the so-called gradient coefficient). In particular, the strain-energy density function, besides its dependence upon the standard strain terms, depends also on strain gradients. This expression derives from form II of Mindlin’s theory, a form that is appropriate for a gradient formulation with no couple-stress effects (in this case the strain-energy density function does not contain any rotation gradients). Here, both the formulation of the problem and the solution method are exact and lead to results for the near-tip field showing significant departure from the predictions of the classical fracture mechanics. In view of these results, it seems that the conventional fracture mechanics is inadequate to analyze crack problems in microstructured materials. Indeed, the present results suggest that the stress distribution ahead of the tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the classical results. The latter can be explained physically since materials with microstructure behave in a more rigid way (having increased stiffness) as compared to materials without microstructure (i.e., materials governed by classical continuum mechanics). The new formulation of the crack problem required also new extended definitions for the J-integral and the energy release rate. It is shown that these quantities can be determined through the use of distribution (generalized function) theory. The boundary value problem was attacked by both the asymptotic Williams technique and the exact Wiener-Hopf technique. Both static and time-harmonic dynamic analyses are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.