We present a combinatorial analysis of fiber bundles of generalized configuration spaces on connected abelian Lie groups. These bundles are akin to those of Fadell–Neuwirth for configuration spaces, and their existence is detected by a combinatorial property of an associated finite partially ordered set. This is consistent with Terao’s fibration theorem connecting bundles of hyperplane arrangements to Stanley’s lattice supersolvability. We obtain a combinatorially determined class of K(π,1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K(\\pi ,1)$$\\end{document} toric and elliptic arrangements. Under a stronger combinatorial condition, we prove a factorization of the Poincaré polynomial when the Lie group is noncompact. In the case of toric arrangements, this provides an analogue of Falk–Randell’s formula relating the Poincaré polynomial to the lower central series of the fundamental group.