Multistep matrix splitting iterations serve as preconditioning for Krylov subspace methods for solving singular linear systems. The preconditioner is applied to the generalized minimal residual (GMRES) method and the flexible GMRES (FGMRES) method. We present theoretical and practical justifications for using this approach. Numerical experiments show that the multistep generalized shifted splitting (GSS) and Hermitian and skew-Hermitian splitting (HSS) iteration preconditioning are more robust and efficient compared to standard preconditioners for some test problems of large sparse singular linear systems.
Read full abstract