Abstract

For the singular saddle-point problems with nonsymmetric positive definite (1,1) block, we present a general constraint preconditioning (GCP) iteration method based on a singular constraint preconditioner. Using the properties of the Moore–Penrose inverse, the convergence properties of the GCP iteration method are studied. In particular, for each of the two different choices of the (1,1) block of the singular constraint preconditioner, a detailed convergence condition is derived by analyzing the spectrum of the iteration matrix. Numerical experiments are used to illustrate the theoretical results and examine the effectiveness of the GCP iteration method. Moreover, the preconditioning effects of the singular constraint preconditioner for restarted generalized minimum residual (GMRES) and quasi-minimal residual (QMR) methods are also tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.