Elucidating the gene regulatory mechanisms underlying the gut–brain axis is critical for uncovering novel gut–brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil® on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data. The Lacidofil® altogether altered 2941 differential splicing events, predominantly, skipped exon (SE) and mutually exclusive exon (MXE) events. Protein–protein interactions and a KEGG analysis of differentially spliced genes (DSGs) revealed consistent enrichment in the spliceosome and vesicle transport complexes, as well as in pathways related to neurodegenerative diseases, synaptic function and plasticity, and substance addiction across brain regions. Using the PsyGeNET platform, we found that DSGs from the locus coeruleus (LConly), medial preoptic area (mPOA), and ventral dentate gyrus (venDG) were enriched in depression-associated or schizophrenia-associated genes. Notably, we highlight the App gene, where Lacidofil® precisely regulated the splicing of two exons causally involved in amyloid β protein-based neurodegenerative diseases. Although the splicing factors exhibited both splicing plasticity and expression plasticity in response to Lacidofil®, the overlap between DSGs and differentially expressed genes (DEGs) in most brain regions was rather low. Our study provides novel mechanistic insight into how gut probiotics might influence brain function through the modulation of RNA splicing.
Read full abstract