This paper is concerned with the event-triggered consensus control problem for a class of discrete-time stochastic multi-agent systems with state-dependent noises. A novel definition of consensus in probability is proposed to better describe the dynamics of the consensus process of the addressed stochastic multi-agent systems. The measurement output available for the controller is not only from the individual agent but also from its neighboring ones according to the given topology. An event-triggered mechanism is adopted with hope to reduce the communication burden, where the control input on each agent is updated only when a certain triggering condition is violated. The purpose of the problem under consideration is to design both the output feedback controller and the threshold of the triggering condition such that the closed-loop system achieves the desired consensus in probability. First of all, a theoretical framework is established for analyzing the so-called input-to-state stability in probability (ISSiP) for general discrete-time nonlinear stochastic systems. Within such a theoretical framework, some sufficient conditions on event-triggered control protocol are derived under which the consensus in probability is reached. Furthermore, both the controller parameter and the triggering threshold are obtained in terms of the solution to certain matrix inequalities involving the topology information and the desired consensus probability. Finally, a simulation example is utilized to illustrate the usefulness of the proposed control protocol.
Read full abstract