Prokaryotes have evolved a wide repertoire of defense systems to prevent invasion by mobile genetic elements (MGE). However, because MGE are vehicles for the exchange of beneficial accessory genes, defense systems could consequently impede rapid adaptation in microbial populations. Here, we study how defense systems impact horizontal gene transfer (HGT) in the short and long terms. By combining comparative genomics and phylogeny-aware statistical methods, we quantified the association between the presence of 7 widespread defense systems and the abundance of MGE in the genomes of 196 bacterial and 1 archaeal species. We also calculated the differences in the rates of gene gain and loss between lineages that possess and lack each defense system. Our results show that the impact of defense systems on HGT is highly taxon- and system-dependent, and in most cases not statistically significant. Timescale analysis reveals that defense systems must persist in a lineage for a relatively long time to exert an appreciable negative impact on HGT. In contrast, for shorter evolutionary timescales, frequent co-acquisition of MGE and defense systems results in a net positive association of the latter with HGT. Given the high turnover rates experienced by defense systems, we propose that the inhibitory effect of most defense systems on HGT is masked by their strong linkage with MGE. These findings help explain the contradictory conclusions of previous research by pointing at mobility and within-host retention times as key factors that determine the impact of defense systems on genome plasticity.
Read full abstract