Abstract

Anopheles is a genus belonging to the Culicidae family, which has great medical importance due to its role as a vector of Plasmodium, the causative agent of malaria. Great focus has been given to the salivary gland proteins (SGPs) group from Anopheles' functional genomics. This class of proteins is essential to blood-feeding behavior as they have attributes such as vasodilators and anti-clotting properties. Recently, a comprehensive review on Anopheles SGPs was performed; however, the authors did not deeply explore the adaptive molecular evolution of these genes. In this context, this work aimed to perform a more detailed analysis of the adaptive molecular evolution of SGPs in Anopheles, carrying out positive selection and gene family evolution analysis on 824 SGPs. Our results show that most SGPs have positively selected codon sites that can be used as targets in developing new strategies for vector control and that younger SGPs evolve at a faster rate than older SGPs. Notably, we could not find any evidence of an accelerated shift in SGPs' rates of gene gain and loss compared with other proteins, as suggested in previous works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call