Radiation is known to potentially interfere with cellular functions at all levels of cell organization. The radiation-induced stress response is very complex and involves altered expression of many genes. Identification of specific genes may allow the determination of pathways important in radiation responses. Although several radiation-related research have been studied extensively, the molecular and cellular processes affected by proton exposure remain poorly understood. Our earlier reports have shown that proton radiation induces reactive oxygen species (ROS) formation and lipid peroxidation and inhibits antioxidants, superoxide dismutase, and glutathione. Therefore, in this present study, we used quantitative real-time reverse transcription polymerase chain reaction approach and showed the modulation of several genes including oxidative stress, antioxidants defense mechanism, ROS metabolism, and oxygen transporters related genes expression in 2-Gy proton-exposed mouse brain. Literature evidences suggest that change in oxidants and antioxidants levels induce DNA damage, followed by cell death. In conclusion, changes in the gene profile of mouse brain after proton irradiation are complex and the exposed cells might undergo programmed cell death through alteration of genes responsible for oxidative stress signaling mechanism.