Abstract

The nucleoside triphosphate diphosphohydrolase (NTPDase) family cleaves tri- and diphosphonucleosides to monophosphonucleosides and is responsible for terminating purinergic transmission. Since the NTPDase family in zebrafish is poorly understood, here we evaluated the nucleotide hydrolysis in three tissues of adult zebrafish (brain, liver, and heart), confirmed the presence of distinct NTPDase members by a phylogenetic analysis and verified their relative gene expression profiles in the respective tissues. A different profile of ATP and ADP hydrolysis in the brain, liver, and heart as a function of time and protein concentration was observed. Sodium azide (20mM), ARL 67156 (300 microM) and Suramin (300 microM) differently altered the nucleotide hydrolysis in zebrafish tissues, suggesting the contribution of distinct NTPDase activities. Homology-based searches identified the presence of NTPDase1-6 and NTPDase8 orthologs and the phylogeny also grouped three NTPDase2 and two NTPDase5 paralogs. The deduced amino acid sequences share the apyrase conserved regions, conserved cysteine residues, putative N-glycosylation, phosphorylation, N-acetylation sites, and different numbers of transmembrane domains. RT-PCR experiments revealed the existence of a distinct relative entpd1-6 and entpd8 expression profile in brain, liver, and heart. Taken together, these results indicate that several NTPDase members might contribute to a tight regulation of nucleotide hydrolysis in zebrafish tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.