The olive fruit is a drupe whose development and ripening takes several months from flowering to full maturation. During this period, several biochemical and physiological changes occur that affect the skin color, texture, composition, and size of the mesocarp. The final result is a fruit rich in fatty acids, phenolic compounds, tocopherols, pigments, sterols, terpenoids, and other compounds of nutritional interest. In this work, a transcriptomic analysis was performed using flowers (T0) and mesocarp tissue at seven different stages during olive fruit development and ripening (T1-T7) of the 'Picual' cultivar. A total of 1755 genes overexpressed at any time with respect to the flowering stage were further analyzed. These genes were grouped into eight clusters based on their expression profile. The gene enrichment analysis revealed the most relevant biological process of every cluster. Highlighting the important role of hormones at very early stages of fruit development (T1, Cluster 1), whereas genes involved in fatty acid biosynthesis were relevant throughout the fruit developmental process. Hence, genes coding for different fatty acid desaturase (SAD, FAD2, FAD3, FAD4, FAD5, FAD6, and FAD7) enzymes received special attention. In particular, 26 genes coding for different fatty acid desaturase enzymes were identified in the 'Picual' genome, contributing to the improvement of the genome annotation. The expression pattern of these genes during fruit development corroborated their role in determining fatty acid composition.
Read full abstract