The application results of profile control and water plugging technology are highly related to the gelation time and strength of phenolic resin hydrogel. In this work, a hydrogel solution was prepared by fully mixing the prepared polymer solution with a crosslinker. The static gelation process of PFR hydrogel in ampoule bottles and porous media was analyzed by changes in the viscosity and residual resistance coefficient. Then, the dynamic gelation of the PFR hydrogel in porous media was tested using a circulating flow device, and the changes in viscosity and injection pressure were analyzed during the dynamic gelation process. Finally, the effects of the polymer concentration and crosslinker concentration on dynamic gelation were analyzed. The initial gelation time and final gelation time in porous media were 1-1.5 times and 1.5-2 times those in ampoule bottles under static conditions, respectively. The initial dynamic gelation time in porous media was 2-2.5 times and 1.5-2 times the initial static gelation times in ampoule bottles and porous media, respectively. The final dynamic gelation time was four times and two times the initial static gelation times in ampoule bottles and porous media, respectively. The production after dynamic gelation in porous media comprised hydrogel aggregates and water fluid, leading to a high injection pressure and low viscosity of the produced liquid. As the concentration of polymer and crosslinker increased, the dynamic gelation time was shortened and the gel strength was increased. In the dynamic gelation process in porous media, the phenol resin hydrogel could migrate deeply, but it was limited by the concentrations of the polymer and crosslinker. The results of subsequent water flooding showed that the polymer hydrogel had a good plugging ability after dynamic gelation. The deep reservoir could only be blocked off in the subsequent water flooding process when the migration of hydrogel happened in the dynamic gelation process.
Read full abstract