Objective: The current study goal is to develop and optimize nanoencapsulated biocompounds of Berberis asiatica (BCBA) utilizing the ionic gelation process to target the kidney for antiurolithiatic activity. Methods: Nanoencapsulated BCBA was prepared employing the ionic gelation method. Box Behnken Design (BBD) 3-factor, 3-level is used to examine the effects of formulation parameters and to enhance the desired responses. Characterization studies include Fourier transform infrared (FTIR), X-ray diffraction (XRD), particle size, zeta potential, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) performed to study the quality of optimized nanoparticles. Results: Mathematical equations and response surface plots were used to relate the dependent and independent variables. Diagnostic charts were used to show the varied factor level permutations. The percentages of entrapment efficiency (% EE) and drug release (% DR) used in evaluation studies of optimized biocompounds of Berberis asiatica nanoparticles (OBCBANPs) were determined to be 83.7% and 78.33%, respectively. The Fourier transform infrared (FTIR) results showed that chitosan, sodium tripolyphosphate (NaTPP), and BACB were compatible. Due to chitosan and NaTPP gelation in the case of OBCBANPs, X-ray diffraction (XRD) analyses have acknowledged the crystalinity. The particle size and zeta potential of the optimized formulation, found to be 95.4 nm and 31 mV, respectively, indicate the nanoparticles are in the nano range and possess extreme stability by preventing particle convergence. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies reveal that the optimized formulation nanoparticles are spherical in shape, homogeneous, and have little aggregation. The accelerated stability studies showed that the optimized formulation was stable at different temperatures and relative humidity. Conclusion: The stable optimized formulation was prepared, evaluated, and characterized. BBD is employed to optimize the formulation by minimizing the number of experimental runs and enhancing the desired responses. The optimized formulation further needs to investigate the invivo studies for antiurolithiatic activity by targeting the kidney.