Abstract

Epigallocatechin-3-gallate (EGCG) could demonstrate crosslinking effects on myofibrillar proteins, yet its proneness to self-aggregation could bring excessive crosslinking and water loss within gels, hindering its application as an additive during thermal gelation process. Here, encapsulation with the γ-cyclodextrin metal organic framework (γ-CD-MOF) before the use of EGCG was found to play a dual role: alleviating over-crosslinking of proteins and elevating water retention within gels. Results showed that EGCG got a sustainable release throughout the thermal process due to the gradual fracture of O-K coordinate bounds and structural collapse of γ-CD-MOF. Mechanism insights revealed that the use of EGCG loaded γ-CD-MOF (EGCG@γ-CD-MOF) could regulate formation efficiency on disulfide bounds and promote protonation transition of the amino groups in proteins. Moreover, EGCG@γ-CD-MOF brought a higher retention of phenols within gels through preventing oxidative transformation of phenols towards quinones, which were verified to display a higher affinity towards myosin via molecular calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call