A labeling $f: E(G) \rightarrow \{1, -1\}$ of a graph G is called zero-M-cordial, if for each vertex v, the arithmetic sum of the labels occurrence with it is zero and $|e_{f}(-1) - e_{f}(1)| \leq 1$. A graph G is said to be Zero-M-cordial if a Zero-M-cordial label is given. Here the exploration of zero - M cordial labelings for deeds of paths, cycles, wheel and combining two wheel graphs, two Gear graphs, two Helm graphs. Here, also perceived that a zero-M-cordial labeling of a graph need not be a H-cordial labeling.