Abstract

A labeling $f: E(G) \rightarrow \{1, -1\}$ of a graph G is called zero-M-cordial, if for each vertex v, the arithmetic sum of the labels occurrence with it is zero and $|e_{f}(-1) - e_{f}(1)| \leq 1$. A graph G is said to be Zero-M-cordial if a Zero-M-cordial label is given. Here the exploration of zero - M cordial labelings for deeds of paths, cycles, wheel and combining two wheel graphs, two Gear graphs, two Helm graphs. Here, also perceived that a zero-M-cordial labeling of a graph need not be a H-cordial labeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.