Unanticipated background noises often convolute fault information in the gearboxes’ vibration response. The Blind Deconvolution strategy has been extensively applied for fault-impulse enhancement to aid gear fault detection. The existing deconvolution strategies involve designing an optimum filter applied in the time domain. Gear tooth wear leads to the excitation of Gear Mesh Frequency harmonics. Hence, spectral analysis is typically used for gearbox fault detection. As such, feature enhancement in the order domain is more practical than existing blind deconvolution approaches. This study proposes a Spectral Kurtosis-based blind deconvolution strategy with filtering done in the order domain, to aid gear fault detection. Experimental analyses show 109.76% and 64.48% better performance for constant and real-world speed operation, respectively, for the proposed method to aid spectral analysis-based fault detection.
Read full abstract