Abstract
Aiming at the problems of the traditional planetary gear fault diagnosis method of wind turbines, such as the poor timeliness of data transmission, weak visualization effect of state monitoring, and untimely feedback of fault information, this paper proposes a planetary gear fault diagnosis method for wind turbines based on a digital twin. The method was used to build the digital twin model of wind turbines and analyze the wind turbines’ operating state utilizing virtual and real data. Empirical mode decomposition (EMD) was used, and an atom search optimization–support vector machine (ASO-SVM) model was established for planetary gear fault diagnosis. The digital twin model diagnoses faults and constantly revises the model based on the diagnostic results. The digital twin fault diagnosis system was implemented in the Unity3D platform. The experimental results demonstrate the feasibility of the proposed early-warning system for the real-time diagnosis of planetary gear faults in wind turbines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.